A scheme for interpolation by Hankel translates of a basis function
نویسندگان
چکیده
Golomb and Weinberger [1] described a variational approach to interpolation which reduced the problem to minimizing a norm in a reproducing kernel Hilbert space generated by means of a small number of data points. Later, Duchon [2] defined radial basis function interpolants as functions which minimize a suitable seminorm given by a weight in spaces of distributions closely related to Sobolev spaces. These minimal interpolants could be written as a linear combination of translates of a single function φ, the so-called basis function, plus a polynomial. Light and Wayne [3] extended Duchon’s class of weight functions, which in turn allowed for non-radial basis functions in their scheme. Following the approach of Light and Wayne, we discuss interpolation of complex-valued functions defined on the positive real axis I by certain spaces of Sobolev type involving the Hankel transformation and powers of the Bessel operator. The set of interpolation points will be a subset {a1, . . . , an} of I and the interpolants will take the form
منابع مشابه
Interpolation by Hankel Translates of a Basis Function: Inversion Formulas and Polynomial Bounds
For μ≥-1/2, the authors have developed elsewhere a scheme for interpolation by Hankel translates of a basis function Φ in certain spaces of continuous functions Yn(n∈ℕ) depending on a weight w. The functions Φ and w are connected through the distributional identity t4n(hμ'Φ)(t)=1/w(t), where hμ' denotes the generalized Hankel transform of order μ. In this paper, we use the projection operators ...
متن کاملApproximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کاملA new trust-region algorithm based on radial basis function interpolation
Optimization using radial basis functions as an interpolation tool in trust-region (ORBIT), is a derivative-free framework based on fully linear models to solve unconstrained local optimization, especially when the function evaluations are computationally expensive. This algorithm stores the interpolation points and function values to using at subsequent iterations. Despite the comparatively ad...
متن کاملSharing several secrets based on Lagrange's interpolation formula and Cipher feedback mode
In a multi-secret sharing scheme, several secret values are distributed among a set of n participants.In 2000 Chien et al.'s proposed a (t; n) multi-secret sharing scheme. Many storages and publicvalues required in Chien's scheme. Motivated by these concerns, some new (t; n) multi-secret sharingschemes are proposed in this paper based on the Lagrange interpolation formula for polynomials andcip...
متن کاملInterpolation of Lipschitz functions
This paper describes a new computational approach to multivariate scattered data interpolation. It is assumed that the data is generated by a Lipschitz continuous function f. The proposed approach uses the central interpolation scheme, which produces an optimal interpolant in the worst case scenario. It provides best uniform error bounds on f, and thus translates into reliable learning of f. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Approximation Theory
دوره 164 شماره
صفحات -
تاریخ انتشار 2012